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Abstract

Abductive reasoning and temporal reasoning have for the most part
remained separate fields of study. Models for either tasks have made
overly-simplistic assumptions about the other in order to concentrate on
small highly-domain specific tasks. For example, existing abductive mod-
els have precluded any temporal information in their formulations whereas
temporal models do not address abduction being only concerned with con-
sistency issues. We present a unified approach 1o merging abductive and
temporal reasoning. This approach properly subsumes existing abductive
models as well as temporal ones and provides a precise framework for ex-
planatory reasoning. Furthermore, effective algorithms for this new model
are developed based on linear programming techniques.

1 Introduction

The need for abductive reasoning (explanation) has been demonstrated in vari-
ous Al domains such as natural language understanding, medical diagnosis and
planning. Formally defined as “the process of identifying the best set of assump-
tions to prove a given observation”, several models have been proposed such as
belief revision in Bayesian networks [10], cost-based abduction [8, 4] and set-
covering theory [11]. Intuitively, these models atiempt to provide a mechanism




for reasoning the “causes from eflects™. Since there are typically an enormous
number of causes for a given eflect, the various models lay down a framework
for deciding which causes are more likely to have occurred.

The notions of cause and effect implicitly require a temporal element. Yet.
the existing models fail to address this. Unmistakably, the need for model-
ing temporal relationships has been identified in various Al applications espe-
cially those we mentioned earlier for abductive reasoning. Cutrent abduction
techniques assume a very loose wemporal ordering in it’s explanations. It only
requires that effects should not precede causes. Hence, they are incapable of
modeling more specific temporal information such as “cause A cannot precede
eflect B by more than § minutes”™.

On the other side of the coin, several formulations have been proposed for
temporal teasoning such as Allen's interval algebra [1], point algebra (21} and
temporal constraint networks [6] Each of these models provide a rich framework
for modeling temporal relationships. However, they have been used only for
proving the consistency of a given set of temporal events. The 1ssue of abduction
18 not addressed.

In this paper, we provide a unified approach to abduction and temporal
reasoning. We were able to

o develop a formal model for representing and reasoning with both causal

and temporal information permitting the rigorous analysis of the proper-
ties in this approach;

s demonstrate the natural subsumption of existing temporal and abductive

models by our approach.
Thus, this provides us with a good idea of the representational power of cur
approach. Furthermore, we were also able to

» develop eflective algorithms for finding the best temporally consistent ex-

planation based on linear programming technigues.
Earlier work on solving abduction problems through integer linear programming
were shown to be quite successful and efficient [14, 13, 3] providing us with a
promising launching point for the algorithmic design at hand.

We begin our presentation with a brief review of a few of the existing abduc-
tive reasoning models in Section 2 and temporal ones in Section 3. In Section 4,
we describe the formalisms of our new unified model. Finally, we present an
algorithm based on integer linear programming to find the best explanation for
our mode] in Section 5.

2 Abductive Reasoning

As we mentioned earlier, there are typically a large number of explanations
(causes) to prove a given observation (effects). Unfortunately, numbered among
these are explanations which we may consider to be “far-fetched”. For example,




Fi1G. 2.1. A cost-based abduction graph.

we could conceivably explain “The dog is barking.” with “Because the fire-
hydrant bit it.”. All the models for abduction are centered around defining
a mechanism for ordering all the available explanations. In this way, 1t then
becomes possible to identify what the “best” explanations ate.

We begin by looking at the model of cost-based abduction developed by Char-
niak and Shimony [4]. Knowledge is represented in the form of a directed acvclic
graph where nodes denote propositions and the arcs between the nodes repre-
sent direct logical relationships. In particular, the nodes are marked as either
AND-nodes or OR-nodes. I{ a proposition is an AND-node, then it’s tryth value s
the conjunction of the truth values of all it's immediate parents. Similarly, this
is the case for an OR-node. Hypothesis nodes are nodes which hive no parents.
Evidence comes in the form of indicating that a certain subset of propositions
{nodes) are true. The goal then is to find a truth assignment Lo the graph which
15 consistent to the given evidence by assuming the truth values of the vari-
ous hypothesis nodes. Since there maybe numerous combinations of hypothesis
node assignments Lo prove the evidence, a cost is attached to each hypothesis.
This cost is used to reflect how likely it is to assume a certain hypothesis node.
A cost can then be defined for an explanation as the sum of the costs incurred
by the hypothesis nodes. The best explanation will be the explanation with
minimal cost. Consider the following scenario: “John comes home from work
and finds that the house is dark and quiet. He concludes that no one is home.”.
Figure 2.1 represents our knowledge base. Given our observation thatl the house
is dark and quict, we find that the minimal cost explanation is that no one is
home.

Another model for abduction is belief revision 1n Bayestan networks {10].




Stricily founded in prohability theory, this model also provides a nice graphical
representation of the knowledge base. Again, we have & directed acychic graph.
Each node in this graph represents some random variable while arcs between
the nodes denote direct conditional dependencies between the random vanables.
By making various instantiations to the random variables, we can model differ-
ent states of the world. The conditional dependencies laid out in the network
allows us to quickly compute the joint probability of a given instantiation. The
probabilities can then be used to provide us with an ordering on the various
world states (scenarios). The best explanation is the most probable one.

Both of these models provide a nice visualization of the knowledge base
with their graphical structures. However, we feel that the cost-based approach
may be much more intuitive to work with than belief revision. We can easily
map conventional rule-based information into the cost-based network. Further-
more, the cosis can be semantically derived as negative log probabilities on
the hypothesis being true or false. In this way, Charmiak and Shimony show
that cost-based abduction subsumes the probabilistic model of belief revision in
Bayesian networks {18} and vice versa.

As we can see, neither of these two models provides for a temporal component
in their representation scheme. Other models of abduction include coherence
theory [20], parsimonious covering theory [11] and weighted abduction [, 19].

3 Temporal Reasoning

A major part of temporal reasoning has involved determining whether there is
a consistent temporal ordering of a given set of events. The various events are
temporally constrained between one another. For example, “The car started
after Mary turned the ignition key”, We have two events, “the car starting”
and “the ignition key being turned” where the first event must occur “after” the
second. Various temporal representations have been proposed to aid in modeling
these relationships and to provide a mechanism for consistency checking.

One of the more notable models we consider is Allen’s interval algebra |1},
Basically, there is a time interval in which each event occurs denoted by [a, b]
where a is the starting time point and b is the termination point. Temporal re-
lationships between events are expressed as relations between the corresponding
intervals. He identifies 13 possible relations between intervals (See Figure 3.1).
in the above example, we would have the relation

S> K

where S is the starting event and A is the turning event.

Allen’s formulation allows for a disjunction of relations between any two
events. This can be represented in a graphical form where nodes represent events
and the arcs are labeled with a disjunction of relations. The goal is to determine
whether there exists an interval assignment to all the events that satisfy the




- XXX
YYY
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F16. 3.1. Allen’s thirteen possible relations.

disjunctive relations. If such a solution exists, then the given knowledge base 15
consistent.

An alternative temporal model is temporal constraint networks [6]. Allen’s
interval algebra is incapable of dealing with metric information such as fem-
poral distance. For example, “Tony f{ell asleep 5 minules into class” would be
constrained as T'— C = 5 where T is the time point (We are not dealing with
intervals here.) that Tony fell asleep and C is when the class started. Each
event is associated with a particular time point with which it occurs. A time
point may be the beginning or ending of some event, as well as some neutral
point. of time such as 2:30pm.

Each node in a temporal constiraint network represents some event. The
arcs between the nodes are labeled with a disjunction of temporal distance
constraints of the form

{(a; SXJ'-—X.'Sb;)V--vV(anSXj—X(Sbn)

where the a;s and ;s are real numbers or +/- infinity. Hence, the network
is consistent if there exists an assignment to the time points which satisfy the
constraints.

Allen’s interval algebra and the temporal constraint networks both have
differing representational capabilities. As we pointed out, the interval algebra
cannot model temporal distance. However, it can be shown that the temporal
constraint network does not subsume the interval algebra [6].




Other models for temporal reasoning include point aigebras [21], BTK [2].
temporal logic [5], semi-intervals [7] and weak representations of interval alge-
bras [9].

4 Temporal Abduction

We now formalize our unified model for abduction and temporal reasoning.
NOTATION. R denotes the set of real numbers. {a, b] such thata,b € Randa < b
denotes a closed interval on the .cal number line. Let Q denote the set of all
intervals on the real numbers.}

If we wished to use time points as opposed to intervals, we can simply rep-
resent these points as intervals of the form [a,a].

DerFmviTiON 4.1. A temporal relation 1s a relalion on Q.

Allen’s thirteen relations are temporal relations as well as the constraints
(temporal distance, etc. ) in temporal constraint nelworks.

DEFINITION 4.2. A sel of R of temporal relairons s sard 1o bz complete tf and
only if given any two intervals Q and Q; from Q, there ezisis a relalion R n
R such that Q1 RQ,.

ProrOSITION 4.1. Allen’s thirteen relations form a complete set.

NoTaTion. Given a relation R, R denotes the transitive closure of relation R
and R-! denotes the inverse of R.
¢ denotes the empty set.

DEFINITION 4.3. A set of R of temporal relations ts said Lo be monotonic ¢f and
only if R=UperR and R n(R)-1 = ¢.

ProrosiTioN 4.2. The subset of relations {<,o0,s, fi,di,m} from the orginal
thirteen is a monolonic sel.

Intuitively, a monotonic set can be said to “point in only one direction.” This
can be used to provide a straightforward approach to modelling cause and effect
in terms of the directionality of the relations. Thus, aRb can be unambiguously
interpreted as a causes b.

DerFmiTION 4.4. A temporal abduction problem (abbrev. TAP) is a S-tuple
W = (G,r,1,¢,0) where
o G = (V,E} is a graph with nodes V represeniing propositions or events
and edges E denoting causal relationships beiween the nodes. We call G
the causal graph of W.
e r is a mapping from V fo the labels {AND,OR}. If r{q) = AND, then q is
also called an AND-node, elc.

1Qur approach can be easily extended to open intervals, semi-open intervals and extended
intervals of the form [a, o}, etc.




o | is a mapping from E to some non-emply coliection of temporal relations.
l denotes the temporal relationships between the nodes.

e c1s a mapping from V' x {true false} x R x R io R called the cost function
for W.

o 0is asubset of V x RU (X} x RU (X} where X 15 a specisl symbol
representing “don’t care”. o 1s called the observations for W

The causal graph represents the information for our abductive proofs. It
is analogous to the graphs found in both cost-based abduction and Bayesian
networks. Previously, in the two former models, an event could be proved by
proving the events which are the immediate parents. This continues recursively
until hypothesis nodes are reached. We augment this by further requiring certain
temporal constraints to be satisfied before a parent can participate in a proof
The labels on the edges explicitly represent the temporal information.
Notarion. For each node g in G = (V, £), we define D, = {p € V|(p,q) € E}
called the parents of . Conversely, we define D"‘ = {p € Vl{g,p) € E} called
the children of ¢.

DeFINITION 4.5. Given a TAP W = (G, r,{,c,0) where G = (V, E), we define an
assignment to W lo be a S-tuple s = (G'.1', 1) where
e G' = (V' E') is a subgraph of G called the solution graph.
o ' 1s a mapping from E' to some set of temporal relafions such that for
each e € E', I'(e) € l{e).
e I s a mapping from V o some closed interval {a,b) where a < b.

Intuitively, ¢ € V' if and only if ¢ has been assigned true. Furthermore, I(¢)
represents the time interval in which ¢ is true.
Notarion. Given an interval mapping /{¢} = [a,b], we define two projectior
functions I;(¢) = a and I,(q) = b.

DEFINITION 4.6. An assignment s = (G’ I/, 1) for W = (G, r,l,c,0) is said 1o be
causally sound if and only if the following conditions hold:
® g €V’ if there ezists some (¢,a,b) € o.
o For each node ¢ € V' such that r(q) = AND, if ¢ € V', then Dy C V' and
(r,q) E E' forallpe D,.
o For each node g € V such that r(q) = OR, if g € V', then DNV’ #£ ¢
and (p,q) € E' for somepe D,NV'.
Furthermore, if
o G' is acyclic.
then s is said to be strong causally sound.

Causal soundness simply guarantees that the propositions are directly sup-
ported /explained according to our causal information. The extra restriction of
strong causal soundness guarantees an additional level support which we will
return to later.




DEFMNITION 4.7. An assigament 8 = (G’ U',]) for W = (G, r. ! c,0) 15 said to be
temporally consistent if end only if
o For cach pasr of nodes p,q € V' such thate = (p,q) € E', I{p)RI(q) where
R = V(e) is the tempore! relation.
o If{g,a,b) € o, then the followsng conditions hold.
- Ifa# X, then 1)(g) = a.
- Ifb# X, then Ix{q) = b.
Simply put, an assignment is temporally consistent if all the temporal con-

straints are satisfied as well as any initial conditions imposed by the observation
information.

DEFINITION 4.8. An assignment 5 for W i3 said to be an (strong) explanation tf
and only 1if s is (strong} causally sound and temporally consistent.

Now, since we may have many possible explanations for a given observation,
we impose an ordering in order to determine the best one.
DEFMNITION 4.9. Given an assignment s = (G’ I',]) for W = (G, r,l ¢ ,0}. we
define the cost of s as follows

O(s) = 3 clg.true, i(g). Ja(g)) + Y cly.false. Ii(a). 1a(g). (1)

qev’ eV -V

DeFmntrion 4.10. The (strong) explanation s for W which minimizes O(s) 1s
said o the best (strong) explanation for W.

This completes our formulation of temporal abductive problems. As we can
easily see, this approach merges both types of reasoning into a single theoretical
framework. Let us now consider two restricted classes of TaP which provide
additional properties. We denote these two classes by A4, and AAfq.
DEFINITION 4.11. A TAP W = (G,r, 1, ¢, 0) belongs m A, if and only if G 1s
acyclic.

With an acyclic causal graph, we can prove the {oliowing theorem:

THEOREM 4.3. Given a TAP W in My, if s 15 a causally sound gssignment for
W, then s is also strong causally sound.

{Proofs can be found in the Appendiz.)
For the second class, we define

DerFINITION 4.12. A TAP W = (G, 1, ¢, 0) belongs in M2 if and only if the range
of | is a monolonic collection of temporal relations.

THEOREM 4.4. Given a TAP W in M3, if 5 1s o causally sound as well as a
temporally consisient assignmeni for W, then s is also strong causally sound.

The important property shared between these two classes is that we do
not have to explicitly check for acyclicity in the solution graph given that the




remaining conditions are satisfied. Cyclicity is a problem for abductive models
because of the existence of “anomalous” explanations which are not properly
ruled out. For example, sav we have the rules that A implies B and B implies
A. If we have the observation A, then we can use B to explain A. Now, we
must explain B. Well, A is already true so we can use it to explain B and ad
nauseum.?

One final note in our TaP formulation: Consider the following causal infor-
mation

A and B can be used to prove C if either one of 4 or B precedes C.
Suppose that we have arcs from A to C and B to C such that both these
arcs have two temporal labels “<” and “=". There are 4 possible labeling
combinations for our two arcs. Unfortunately, we require at least one arc labeled
“<”, thus ruling out the combination with two “="s. Although our present
model does not directly represent this sort of temporal constraint, we can show
that it can be appropriately represented by a slight modification.

We have completed our formulation of temporal abduction. We now show
that existing abductive as well as temporal reasoning models are subsumed
within our new framework.

For Allen’s interval algebra and temporal constraint networks, the goal is to
determine whether there exists a feasible solution. We can model this as a TAP
problem by taking the temporal graphs and labeling the nodes as AND-nodes.

THEOREM 4.5. Given the TAP we construcled above, an assignment s which
is causally sound and temporally consistent 1s @ feasible solution for the given
temporal reasoning problem.

For abduction, we can also prove the following theorem:

THEOREM 4.6. The temporal abduction problem subsumes cost-based abduction
[4], generalized cost-based abduction [16] and belief revision in Bayesian net-
works [10].

Since belief revision in Bayesian networks can be transformed into cost-
based abduction [18], all we need to consider is the subsumption of the cost-
based approach. In the original approach, no temporal ordering is required
of given nodes. We can rephrase this as allowing for any temporal ordering
of the nodes. All we need to do is label the edges of the cost-based problem
with all the temporal relations available. Hence, labeling with a complete set of
temporal relations is sufficient. We can prove that this will provide us with the
best-explanation for the original problem. (Actually, we could have identically
labeled each edge in the old problem with a single temporal relation and achieve
the same results. However, this seems less semantically appealing.) Hence, we
have actually transformed our problem in to an Af; problem. Generalized cost-
based abduction is proved similarly.

?For a detailed discussion on cyclicity in abduction, see [16].




5 Integer Linear Programming

In this paper, we have developed an effective approach for finding the best ex-
planation in a TAP using integer linear programming [17]. Previous work on
reducing abduction problems to integer linear programming were quite success-
ful and efficient at determining the best one {15, 13, 3].

The transformation involves mapping the notion of propositional truth as-
signments into some multi-dimensional space which we will denote by R”. A
subspace of R" will represent “valid” truth assignments where valid includes
things such as temporal consistency and causal soundness. In particular, we
are interested in transforming it into a polyhedral conver set3 Such a set can
be described by a collection of linear inequalities. As it turns out, these in-
equalities will intuitively correspond to the restrictions/constraints required in
making valid truth assig .ments of the propositions. Finally, we would like to
define a linear energy function such that by minimizing it over the convex sct,
the resulting answer will be the best explanation after we make the appropri-
ate inverse mapping. Thus, we would have the makings of a linear constraint
satisfaction problem.

Once the mapping is complete, we can then use highly efficient tools and
techniques from Operations Research to solve our integer linear program. Such
tools include the Simplez method and Karmarkar’s projective scaling algorithm
augmented with a branch and bound approach [17]. These techniques have a
long history in Operations Research and are well understood.

We begin our transformation to integer linear programming as follows: As-
sume that the various temporal relations can be represented by a collection of
linear inequalities, i.e., given temporal relation R, I(g;)}f2/(g2) if and only if

dijay+dyaby+diaey+digd; < gy

dijoy +de2by +digaz+disds < @

where I{q:) = lay, b}, I(g2) = [a2,b)) and d, ;,g; are some constants. For
example, consider Allen’s “<” relation. We can represent it with the following
single inequality:

az — b; S 0-4¢

where & is some arbitrarily small but positive value.

Finally, assume that our cost-function is a linear function.

We can now proceed with transforming the abductive and temporal con-
straints into linear inequalities. Like values in boolean circuits, we can use
numerical assignments instead of true or false. In general, we use 1 for true
and 0 for false. By taking this viewpoint, we can now consider the internal

2 “Polyhedral” refers 1o the fact that the boundaries of the subspace are composed of hyper-
planes.
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consistency as some form of mathematical formulae to be satisfied where each
node is actually a variable in the equation. Our purpose is now to show how
these equations can be derived and then prove that they guarantee the internal
consistency required.

We begin our derivation with the simplest of the requirements. Let ¢ be
an evidence node in our TAP. Associate the variable r, with ¢. Since ¢ is an
evidence node, any explanation for ¢ must assign g to true. This can be modeled
by the equation

z, = 1 (2)

Next, let g be an AND-node with parents D,. We have the following: ¢ 15 true
iff p is true for all nodes p in Dy. Symmetrically, ¢ 1s false iff there enists a p
in Dy such that p 1s false. We can accomplish this with the following equations:

z, £ 1z, foreach pe D, (3)

which guarantees that

1. g being true forces all p in D, to be true, and

2. some p in Dy being false {orces ¢ to be false.
Note that at this time we are assuming that our variables may only take values
of 0 or 1 although there is no upper or lower bound on the results of evaluating
either side of the equation.

Finally, the OR-node can be modeled with the following equations:

2 ™

peED,
Mpgq

v

Ie (4)

IN

z, for each p€ Dy (5)

where ¢ is an OR-node with parents Dy and my,, is a special marker-node indi-
cating that p is used to explain ¢.1
We now make precise how we can transform 0-1 assignments on the real
variables z, and m,, into solution graphs for the TAP and vice versa.
Let [ be a G-1 assignment to the real variables. We construct a solution
graph G'[f] = (V’, E') for our TAP as follows:
epeV ifandonlyifz, = 1.
¢ For each p,g € V such that r(q) = AND and p € D, (p,q) € E' if and
onlyifzp =z, =1.
o For each p,q € V sucli that #(¢) = ok and p € D,, (p,q) € E" if and only
if mpe = 1.
Conversel:, we can construct a 0-1 assignment {rom a solution graph as follows:
ez, =1]ifand only ifpe V'

{ AND-nodes do not require marker-nodes since all the parents of such a node must be used
in any explanation.




o For each p,g € V/ such that r{g} = aND and p€ D,, z,
only if (p.q) € £

o For each p,q € V' such that r(g) = oR and p € D,, my, = 1 1f and ¢y
f(p.g) € £

With these transformations we can now prove the following theorem.

THEOREM 5.1. Any 0-1 assignment [ satisfies (8} - (5) 1f and oniy of C'if]
salisfies the causal soundness properites in Defimstion {.6.

e = 1 if and

it

Together, these equations will guarantee that any feasible assignment will be
causally sound which is the first step towards finding the best explanation Next,
we now define the constraints necessary for guaranteeing temporal consistency

ProPOSITION 5.2. Grven a TAP W = (G, r [, ¢, 0) where G = (V' E), the number
of variables and constrainis used Lo guaraniee causal soundness us
* Variables

M+ 3 DS IVI+IEL
ge v
r{q} = OR

o Constraints

i+ Y IDd+ 3 (4D Slet+ IVI+IE]
geV geV
r{g) = AND r{g) = on

When a node pis used to explain node g, then one of the temporal relations
specified on the edge from p to ¢ must be sausfied. Let {R;. B2, .. ,] be the
rclations from p Lo ¢. Associatle a real variable z g, to cach relation 2, indicating
that the relation is satisfied. First, we construct the following constraint:

o I{ r{q) = AND. construct

an, 21-(2~-2, -z, )K (6)

[E-31

where IV is some arbitrarily large positive constant
¢ If r(g) = OR, construct

n

}::R, >1-(1-my)K. (%)

[E3]

e For each (¢,a,b) € o such that a # X',

a, = a. (8)

12




o For each (g,8,b) € o such that b # X,
by = b. {9)

Next, for each relation, augment the associated linear inequalities as follows:
Assume, that for relation R; we have

dy1ap + dyabp +dy 30y +digby < g

dajap + di2by + di 30y +diaby < g

We augment these and include them in our constraints as

d1'10p+d1_767 +d1.3a, +d1_4b' < gx+(l -zn.)k' (10)

dijop +digby +drsa,+deaby < g+ (1 —zp)K

Now, we demonstrate how we can compietely transform 0-1 assignments on
the real variables z,,, m,y, ZR, ap and b, into TAP solutions ®
Let / be an assignment to the real variables. We construct G’ = (V' £'),
I'{e) and I(p) as follows:
e peV'ifand only if z, = 1.
s For each p,g € V such that r(¢) = axD and p € D,, {p,¢) € E' if and
onlyifz, =z¢ = 1.
e For each p,¢ € V such that r(¢g) = oR and p € Dy, (p,q) € £’ il and only
ifm,, = 1.
s Let {R;,..., R,} be the relations on edge ¢ € E’. Arbitrarily choose one
R;, if any, such that zg, = 1 in f. Sct I'(e) = R;.
o li(q) = qq.
o I2(q) = by.
Note that we may have more than one transformation. However, this will have
no cffect on our results since we are mainly interested in determining whether
a feasible solution exists.
Conversely, we can uniquely construct [ from the temporal solution as fol-
lows:
sz, =1ifandonlyifpe V'
e For each p,q € V' such that r{q) = AND and p€ D,, 2z, = 2, = 1 if and
only if (p,q) € E'.
o For each p,q € V' such that r(g) = or and p € Dy, myy = 1 if and only
if (p,q) € E'.
e zp=1if and only if I'(e) = R.
e g = Ii(g).

“ep and b, are in general not assigned to 0-1. In fact, they can be assigned to anything in
R.

13




* by = Ir(q)-
With these transformations, we can now prove the following theorem:

THEOREM 5.3. An assignment s is {emporally consistent if and only if [ satisfies

(6) - (10).

ProPoOSITION 5.4. Given a TAPW = (G, r,l,¢,0) where G = (V, E), the number
of variables and constrainis used to guaraniee temporal consistency s

» Variables
2VI+ 3 le)l.
eeE
¢ Constraints
(1+ M)|E|
where M s the lergest number of constraints used to model a temporal

relation.

We have now shown how our constraints can guarantee both causal sound-
ness and temporal consistency. Hence, the assignments are valid explanations.
To guarantee that we have a strong explanation, we must satisfy the acyclicity
condition for strong causal soundness.

THEOREM 5.5. Given a TAP W in either My or Ada, an assignment s for W s
a strong erplanation if and only if s satisfies (8) - (5) and (6) - (10).

Hence, we do not need to explicitly check for cyclicity in our assignment if our
problem belongs in either class A; or AMy. For our more general TAP problem,
it turns out we can guarantee the acyclicity condition through additional linear
constraints. This can be achieved in a similar fashion as the approach described
in [16] for straight abductive reasoning.

To complete our transformation to integer linear programming, all we need to
do is to define an objective function to minimize. We can take the cost-function
and directly use it as our objective.

THEOREM 5.6. Given a TAP W, an assignment s for W is the best explanation
for W if and only if 5 satisfies (2) - (5) and (6) - (10) and minimizes the given
objective function.

CoROLLARY 5.7. Given a TAP W in either Af) or A1, an assignmenl s for W
ts the best strong explanation for W if and only if s satisfies (2) - (5) and (6) -
(10) and minimizes the given objective function.

6 Conclusions

Development of abductive and temporal models of reasoning have for the most
pari been independent of one another. Work has mainly concentrated on small
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highly-domain specific problems allowing such a segregation. Previous abduc-
tive models fail to address temporal issues and assume a crude notion of Lime.
Temporal models have provided a full representation of time but do not account
for explanatory information.

We have developed a unified framework for temporal abductive reasoning.
This model formally bridges the gap between abductive and temporal reasoning
by merging the two areas. We have precisely defined the notion and mechanisms
for explanatory reasoning taking into full account any temporal information. In
particular, we have also shown that existing models of abduction and temporal
reasoning such as cost-based abduction, belief revision, Allen’s interval algebra
and temporal constraint networks are subsumed by our model. It was shown
that two restricted classes of our model, A1) and AM4,, are sufficient for sub-
sumption and provide additional properties which serve to simplify our search
for the best explanation.

We can transform our search for the best explanation into an integer linear
programming problem allowing us to use the highly efficient tools and techniques
such as Simplex from Operations Rescarch. With this, the best explanation can
be found and precisely described temporally, that is, precise values are provided
for the start and end of any temporal interval.

This approach merges three fields of study together, namely, abductive rea-
soning, temporal reasoning and linear programming. The potential gains seem
enormous in terms of representational power, reasoning capabilitics, etc. One
of the areas currently under study involve applying probabilistic semantics to
our costs [12].
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A Proofs

THEOREM 4.3. Given a TAP W n AMy, if 5 15 a causally sound assignment for
W, then s 1s also strong causally sound.

Proof. From Definition 4.6, 8 = (G',V,I) is strong causally sound if it is
causally sound and G’ is acyclic. Given that W = (G,r,l,c,0)isin Ay, G 15
acyclic from Definition 4.11. Since G’ is a subgraph of G, then G’ is also acyclic.
Thus, s is strong causally sound. O

THEOREM 4.4. Given a TAP W in M2, if 5 is a causally sound as well as
temporally consistent assignment for W, then s is also strong causally sound.

Proof. Given that W = (G, r,1l,¢,0}is in M3, let s = (G’,1',I) be a causally
sound and temporally consistent assignment for W. Assume that G’ is cyclic,
that is, G’ contains a directed cycle. Let G = (V, E) and G’ = (V', E').

Without loss of generality, assume that {A,, A,,...,A,} € V' such that
(AiAig1) EE' fori=1,...,n— 1 and (A,, A1) € E'. These nodes form our
cycle in G'. Since (Ai, Aig1) € E', I{A;)RI(Aiy1) where R = I'((Ai, Ais1))-

Let Ri i1 =l'((Ai, Ais1)) and Ry g = I'{(Aa, A))). Let

R= Rn'] URLzU. L URG
By taking the transitive closure of R, we know that
AR An

and
AR Ay

Hence, RB° N(R°)~! # ¢.

However, since W is in M2, the sel of all temporal relations found in W is
monotonic. Contradiction.

Therefore, G’ is acyclic which implies that s is strong causally sound. O

Before we can properly prove Theorem 4.5, we provide a formulation for
Allen’s interval algebra and temporal constraint networks.

DEFINITION A.1. An interval algebra problems (abbrev. 1AP} is an ordered pair
1A = (U, k) where
o U = (V,E) is an undirecled graph where V is a set of events and E
represents direct ltemporal relationships between these events.
e k is a mapping from E to some subsel of Allen'’s thirteen temporal rela-
tions. In particular, this is our disjunctive labeling on the arcs.

DEFINITION A.2. Given an 1aPIA = (U, k) where U = (V,E), an assignment
574 15 an ordered pair (J, k') where

o J maps ecach node in V o some closed interval.

o k'(e) € k(e) for alle € E.
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Furthermore, we call 574 a solution 1o 1A if and only if J(p)RJ(q) where R =
K((p.q)) for all(p,q) € E.

DeEFmITION A.3. A temporal constraint network (abbrev. TCN) is an ordered
pair T = (G,1) where
o G =(V,E) s a directed graph where V ts a set of events and E represents
direct temporal relationships between these events.
e t is @ mapping from E lo some collection of closed intervals representing
the disjunciive inequalities belween the events.

DEFINITION A.4. Given ¢ TCNT = (U,t) where U = (V, E), an assignment sr
is an ordered pair (P, t') where

o P map each node in V 1o some real number.

o t'{e)€t(e) foralle€e E.
Furthermore, we call sy a solution to T if and only if For all (p,q) € E, a <
P(g) — P(p) < & where t'((p,q)) = [a, b].

THEOREM 4.5. Given the TAP we constructed above, an assignment s which
is causally sound and femporally consistent is a feasible solution for the given
temporal reasoning problem.

Proof. We begin with Allen’s interval algebra problem. Let JA = (U, %) be
a 1AP where U = (V, E). We construct a TAP W = (G, 1,1, ¢, 0) as follows:
» G =(V, Eg)isadirected graph constructed from U by arbitrarily choosing
an arc direction for each edge.
r{(g) =AND forallge V.
I(e) =k(e)foralle g E.
c=0.
(g X,X)€oforallgeV.
Let s;4 = (J, k') be a solution to I A. Construct an assignment s = (G', I, [)
for W where G’ = (V', E') as follows:
e G'=G.
o l'(eg) = k'(e) for each eg € E' where € is the corresponding undirected
arc forein U.
o I(g)=J(q)forallqe V.
Now, we the following conditions on s hold:
e g € V' if there exists some (q,a,b) € o.
Clearly, this follows from our construction.
e For each node ¢ € V such that ¢ € V', if r(¢) = AND, then D, C V' and
(p.q) € E' for all p € D,.
From our construction of W, all nodes are AND-nodes. Since G' = G, this
follows straightforwardly.
Thus, s is causally sound. Furthermore, we are guaranteed that for each pair of
nodes p,g € V' such that e = (p,q) € E’, I(p)RI(q) where R = I'(¢). Thereflore,
s is also temporally consistent.
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Now, we must prove the converse. Let s = (G',!', I) where G’ = (V' E’) be
an explanation for W. Construct s;4 = (J, k') as follows:
e Jg)=1I{g)forallge V.
o k'(e) = U(eg) for all ¢ € E where eg is the directed edge corresponding
toeinG.

From our construction, we can readily prove that s; 4 is a solution to JA.
Hence, we can find a solution for I4 by solving for some explanation in W.
Next, we must prove subsumption for temporal constraint networks. The

construction is similar to Allen’s interval algebra above except that we must

map the time points used in TCNs to closed intervals of the form [a, a].

Let T = (G,t) where G = (V,E) be a TcN. Construct a TAP W =

(G, 1, 1,¢,0) as follows:
er(¢)=aNDforallge V.

e Il(e) will be the corresponding set of relations on closed intervals trans-
formed from the disjunctive inequalities on the original TCN edges.
e c=0,
e (¢, X,X)€oforalige V.
Our proof that that all solutions for T are solutions for W an vice versa is
similar in nature to the above proof for 1aps. 0O

THEOREM 5.1. Any 0-1 assignment [ salisfies (2) - (5) if and only if G’'[f]
satisfies the causal soundness properties in Definition 4.6.

Proof. Let [ satisly (2) - {5). We now prove that the solution graph
G' = (V',E’) constructed from [ satisfies the causal soundness properties in
Definition 4.6.

Case 1. q € V' if there exists some (g,a,b) € 0.
Since (g,a,b) € o, this implies from (2) that z, = 1. Hence ¢ € V' from
our construction.

Case 2. For each node ¢ € V such that r(g) = anp, if ¢ € V', then D, C V'
and (p,q) € E' for all p € D,.
Assume that ¢ € V', This implies that z, = 1. From (3), z, = 1 for all
p € Dy. From our construction, we know that D, C V’. Furthermore,
(p.q) € E' for all p € D,.

Case 3. For each node ¢ € V such that r(g) = oR,if g € V', then D, N V' #£ ¢
and (p,q) € E' forsome pe D,NV’.
Assume that ¢ € V'. This implies that zy = 1. From (4), there exists
some my, = 1 where p € D,;. From our construction, {p,q) € E" which
further implies that p € V'. Hence, D, N V' # ¢ and (p,q) € E’ for some
pED, NV,

Therefore, G’ is causally sound.

For the converse, iet G’ be causally sound. Assume that [ constructed from
G’ does not satisfy (2) - (5). This implies that one of the following constraints
are violated:
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Case 1. (2) : (g,a,b)€ 0,2, = 1.
Since (q,a,b) € 0, ¢ € V'. From our construction, z, = 1. Hence, no
violation.

Case 2. (3) : r{¢) = aND, 2, < z, forall p € D,.
If this constraint is violated, this implies that z, = 1 and z, = 0 for some
p € D,. From our construction, ¢ € V' but p is not in V’. However, since
G’ is causally sound, D, C V'. Contradiction.

Case 3. (4) : r(q) = oRr,
}: Mpg 2 Z,4.

peD,

If this constraint is violated, this implies that z, = 1 and m,, = 0 for
all p € D,. From our construction, ¢ € V' but (p,q) is not in E' for all
p € D,. Contradiction.

Case 4. (5) : r(q) = OR, my, <z, forall p € D,.
If this constraint is violated, this implies that z, = 0 and m,, = 1 for
some p € D,. From our construction, p is not in V' and (p,q) € E'.
Contradiction.

Therefore, [ satisfies all the constraints. O

THEOREM 5.3. An assignment s is temporally consistent if and only if [ salisfies
(6) - (10).
Proof. Let s be temporally consistent. Assume f constructed from s does

not satisfy (6) - (10). This implies that at least one of the constraints has been
violated.

Case 1. (6) : r(q) = AND, p€ D, and

Zzﬂ. 21=-(2—-zp —z4)K.
i=1

This constraint is violated when z, = z, = 1 and zg, = 0 for all i. From
our construction, e = (p, q) € E’. However, this implies that I'(e) = R for
some R on e. Thus, zg = 1. Contradiction.

Case 2. (7) : r{¢g) = OR, p € D, and

Zzn_ 21— (1~my,)K.
i={

This constraint is violated when m,, = 1 and zg, = 0 for all i. From
our construction e = (p,q) € £’. However, this implies that '(e) = R for
some R on ¢. Thus, zz = 1. Contradiction.

Case 3. (8) : (¢,a,0)€0,a# X and

G,, =a.
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This constraint is violated when a, # a. From our construction, this
implies that 1,(¢) # a. Contradiction.
Case 4. (9): (¢,a,b)€0,b# X and

by = b.

This constraint is violated when b, # b. From our construction, this
implies that I;(q) # b. Contradiction.

Case 5. (10) : Set of temporal linear inequalities.
This constraint is violated when zg, = 1 and ap, by, o, and b, are set
accordingly. From our construction, this implies that (/{p)}, I(¢)) is not in
R;. However, !'(¢) = R; and I(p)RiI{q). Contradiction.

Therefore, [ satisfies the constraints.

Now, let [ satisfy the constraints and construct s {from [. We prove that s

is temporally consistent as follows:

Case 1. If (g,a,b) € 0 and a # X, then I,(g) = a.
Since (¢,a,b) € 0 and a # X, (8) implies «, = a. From our construction,
h{q) = a,.

Case 2. If (q,a,b) € 0 and b # X, then Ix(¢) = b.
Since (g,a,b) € 0 and b # X, (9) implies b, = b. From our construction,
Ix(q) = b,

Case 3. For each pair of nodes p,¢ € V' such that e = (p,q) € E', I(p)RI(q)
where R = I'(e).
Let e = (p,¢) € E'. This implies that z, = z, = 1 from our construction.
If r(g) = OR, this further implies that m,, = 1. Either {6) or (7) implies
that for some R € l(e), zgp = 1. Consequently, the set of inequalities
associated with zg in (10) must also be satisfied for a,, by, a4 and b,.
(10) imply that (ap,b,)R(ay,bs). From our construction, I’(¢) = R and
I(p)RI(q).

Thercfore, s is temporally consistent. 0

THEOREM 5.5. Given a TAP W in cither M, or Ma, an assignment s for W is
a strong ezplanation if and only if s salisfies (2) - (5) and (6) - (10).

Proof. Follows from Theorems 4.3, 4.4, 5.1 and 5.3. 0

THEOREM 5.6. Given a TAP W, an assignment s for W is the best crplanation
for W if and only if s satisfies (2) - (5) and (6) - (10) and minimizes the given
objective funciion.

Proof. Follows from Definitions 4.9 and 4.10 and Theorem 5.5. O
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